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SUMMARY

The effects of compressibility on the flow about the NACA 0012 air-
foll in a wind tunnel and in free air have been investigated by the
relaxation method. The detalls of how the numerical work is carried
out have been described previously. The solubtions obtained cover the
incompressible case, the cases when the entire flow 1s subsonic, the
case when supersonic regions are present, and several cases when the
supersonic region terminates in shock waves, that is, post-critical
flow. Comparisons are made with experimental results and with approxi-
mate theories for the compressibility effects and for wind-tunnel
Interference.

The calculated results describe compressibility effects, as
observed experimentally, considerably, better than any of the well-known
compressibility correction formulas. The Ppredicted post-critical flow
patterns, including the shock waves if present, agree well with experi-
mental pressure distributions. The results calculated by this method
agree with experimental results as well as possible for any theory based
upon a frictionless-fluld model. To include friction in the calculations
involves considerably greater computation time and a modern sequence-
controlled calculator i1s indicated.

)

INTRODUCTION

The effect of compressibility on airfoll performance is for most
practical purposes negligible for velocities less than about 0.3 of the
speed of sound. Above this Mach number the effects of compressibility
increase more and more rapidly until they assume major importance in
the asrodynamic performance of airfoils and other bodies. A number of
more or less successful attempts have been made to predict in an approxi-
mate way the effects of compressibility. Perhaps the best-known formulas
for the correctlon of the flow about a body are those of Prandtl, Glauert,
Von Kdrmén, and Tsien (references 1 to 4, respectively). In all these
compressiblility correction formulas, high accuracy is attained for small
deviations from the incompressible flow, but the accuracy decreases as
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the Mach number increases. In no case has it been possible to predict
the precise Mach number at which shock waves first appear nor to give
any plcture at all of the flow about the body after shock waves are
present. In fact, there are no analytical methods available at the
present time which appear to be adequate to obtain solutions of the flow
about a body when shock waves are present. Besldes the serious effects
of compressiblility on airplane performance and on ability to predict
theoretically what will happen, there is an additional serious difficulty
which arises 1n attempting to study these effects experimentally. The
best method of studying aerodynemic performance that has been developed
1s the use of wind tunnels. The wind-tunnel walls introducs effects
which are not present for the same body flying in free air, and wind-
tunnel results must, therefore, be corrected for the effects of the
walls if accurate predictions are to be made for flight in free air.
Theoretlcal predictions of the effect of wind-tunnel walls for incom-
pressible fluids have been successful with the required accuracy. TFor
increasing Mach numbers, however, the correctlons increase very rapidly
and have a very profound effect on the flow as shock waves appear.
Thus, the best experimental method in aerodynamics is seriously handi-
capped by the lack of knowledge of what wind-tunnel-wall corrections
showld be made to wind-tunnel test results.

In several reports (references 5 to 8) the relaxation method for
the numerical solution of partial differential equations has been extended
to include the flow of compressible fluids. In the present report these
methods are used to compute the flow gbout an airfoil in a wind tunnel
and in free air. Several years ago when this work was started, tests
wore planned by the NACA for the symmetricel WACA 0012 airfoll with a
5-inch chord in an 18-inch two-dimensional wind tunnel. These tests
woere to involve among other things pressure-distribution measurements
at zero angle of attack of the airfoil so that this particular arrange-
ment was decided upon for the present computations.

This work was done at Harvard Unlversity under the sponsorship and
with the financial assistance of the Natlonal Advisory Commlttee for
Aeronautics.

The author acknowledges the very able and patlent efforts of
Dr. Priscilla F. Bok, who carried out the involved numserical computa-
tions required to obtain the solutions presented in this report.
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c airfoll chord
- P
Cc pressure coefflicient EL———A=
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2

CPO pressure coefficient for incompressible fluid, i-.e., M=0
H tunnel helght

M local Mach number \

My Mach number of undisturbed stream

D local static predsure

Py “static pressure of undisturbed stream

o stagnation pressure of undisturbed stream

q local velocity

a; ) velocit;ﬁ of wndisturbed stream

ay ' velocity relative to velocity of undisturbed stream (q /‘11)
t airfoil thickness

a angle of attack )

V4 1sentroplc exponent

W stream function for coinpressible fluid

n stream function for incompress.ible fluids

p mass density of fluid :

;)1 mass densi:by of fluid in undisturbed strea.ﬁ
3 velocity potential for incompressible fluid

PROCEDURE

The calculastlons have been carried out essentially as described
in reference 5. The first step was to compute and draw the airfoil
accurately on the center line of the wind tunnel with the dimensions
mentioned previously. (See fig. 1.) By numerical calculations, the
Incompressible stream function 17 and velocity potential £ were

computed and were then used as a coordinate system for the calculation
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of the flow of the compressible fluid. The actual calculations were
carried out by a square network of polnts which were widely spaced -

(2 in.) Par from the airfoil and were very closely spaced at the
critical sections of the airfoll surface itself. The smallest nets
used were 1/32 inch (as compared with the 5-in. chord). These fine
nets were used at the nose of the airfoll where conditions change very
rapidly near the stagnation point and also on the surface of the alr-
folil near the nose where the velocity is highest and hence where the
greatest accuracy is required for the compressibility corrections. A
total of apout 600 points was used. If the finest net had been extended
through the entire region, about 200,000 points would have been needed.
The stream function 7 was first. computed. The Cauchy-Rlemann
equations in finite-difference form were then used to compute the
velocity potential £. The accuracy of the veloclty potential thus
obtained was not so high as for 7 but was increased to this accuracy
by relaxation. N

In figure 1 the geometry and essential dimensions of the airfoil in
the tunnel are shown, and In figure 2 the streamlines, equipotential
lines, and constant-velocity lines are drawn for the lncompressible
flow. The values on the constant velocity lines are indicated by values
of g4 which are equal to the velocity of the fluld at that point

divided by the velocity of the fluid at infinity. The accuracy of the
numerical calculation is considerably higher than can be shown in

figure 2. The calculations were made with five digits. The stream
function on the center line of the tumnel and on the surface of the
alrfoll was taken as zero while that on the tunnel wall was taken

as 90,000. This large number of decimal places is required if reasonable
accuracy in the value of gy 18 to be obtained, and accurate qj values

are essential for the relatively sensitive effects at high Mach numbers.
The precise accuracy for the valus of g3 1s difficult to estimate.

RESULTS AND DISCUSSION

The calculations for the airfoil in free air gave results which
look essentially like figure 2. The differences are very small and the
significant differences are better indicated in terms of the pressure
coefficient and the so-called induced velocity.

In figure 3 the distribution of pressure coefficlent along the
chord of the alrfoil is shown for the airfoil in the tuwnmnel and the
airfoil in free air. The pressure coefflclent 1s defined by
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. _P-m
o 1,2
P14y
2
=l"_q"
a3
=1 - 912 (1)

Note from this equation that the deviation of qi2 from 1 gives the

pressuré coefficient and hence one decimal place of accuracy is lost
Immediately upon computing a pressure coefficient. It is for this
reason that a large number of decimal places is required for the original
calculation. Note in figure 3 that the difference between the coeffi-
clents in the wind tunnel and in free air is only about 4 percent of the
maximm coefficient. In figwre 3 there are plotted for comparison the
calculations made at the NACA, using Theodorsen's method (references 9
and 10). No attempt has been made to reexamine his method. to see
vwhether the deviations found are to be expected. It is not possible

to locate the cause of this difference without a considerable reexaml-
nation of both calculations. The pressure coefficlent for the airfoil
in the tunnel is everywhere of slightly greater magnitude than that for
the airfoil in free air. This is physically to be expected since, with
a wind-tunnel wall present, there is more 'venturi' effect than if no
restraint had been placed on the shape of the streamlines distent from
the airfoil.

The effect of the wind-tunnel wall can also be considered as
represented by the change 1n velocity at any point in the air stream
produced by the introduction of the tunnel walls. In figure 4 the
velocity 1nduced by wind-tunnel walls in the narrowest section between
the airfoil and the tunnel is shown as computed from approximate
analytical expresslons presented by Tham (reference 11) and es camputed
by the relaxation method. 4 °

After computing the foregoing incompressible solutions, the flow
of a compressible fluld was computed for. a series of Mach numbers by
using the stream function and velocity potential as a coordinate system.
This avolds the use of awkward boundary conditions since now the entire
boundary consisting of the symmetrical axis of the tunnel plus the
surface of the airfoll becomes a single straight line. The following
table shows the cases calculated for Mach numbers of the undisturbed
gtream.
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Airfoll in tunnel Airfoll in free air
Mp =0 o M =0
Ml = Oo)-I- Ml = 0.7
My = 0.6 M; = 0.75; no shock wave present
My = 0.7

M; = 0.73; no shock wave present

M; = 0.74; shock wave present

Ml 0.75; shock wave present

The calculations for the compressible fluid under those subsonic
conditions for which no supersonic region appears are very simple to
carry through. As a supersonlic reglon appears, and particularly as
shock waves are required, the solution becomss increasingly difficult
to obtalin, and it is often lmpossible to get any particular solution on
the first attempt. For the airfoil in the Hunnel, for example, compu-
tations were made in the order- My = 0, 0.4, 0.6, and 0.7. On carrying

out the solution at M; = 0.7, 1t was noted that the Mach number had

almost reached 1 at one point of the airfoll - 20 percent of the chord.
It wag thought that a Jump to Mj = 0.8 would be too great inasmich as

shock waves undoubtedly would appeer before this time, so M; = 0.75

was the next solution attempted. After considerabls effort, 1t was
suspected that no solution could be obtalned unless a shock wave were
included, so this solution was temporarily dropped and M; = 0.7Th was

tried. This solution could not be obtalned elther so the Mach number
was agaln dropped to M; = 0.73. For this case, a solutlon was obtained

1«1:[‘I:hou'l:0 serious trouble, and with this solutlon it was a relatively easy
matter to retwrn to the solution for Ml = 0.74 and introduce a shock

wave. The method by which 1t was foumd convenient to introduce the shock
wave 1s Instructive in that the numerical process here made use of scme

of the characteristics of a hyperbolic equation. The residuals that had
not been removeble in the first place in a solution for M; = 0.7h4 were

distributed primarily in the supersonic region alongside of the airfoill.
On returning to this solution, these residuals were moved back from
colum to column until all the residuals had been accumulated In two
columms near the rear of the supersonic reglon. Then an attempt was
made to introduce a shock wave, following the method described in the
appendix of reference 6. If the two columns of residuals accurately
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described a shock wave after a few attempts at adjustment, then a
golution had been found. If not, the residuals were again moved down-
gtream one column and the shock wave was agaln tried. After a few
trials, it was found possible to get a solubion with a shock wave
present. The solutions for both M; = 0.7% and My = 0.75 with the

airfoil in the tunnel have shock waves. For the airfoil in free air,
no shock waves were required at Ml = 0.75. However, 1t was fairly

certain that they would be required at M; = 0.76 or perhaps at a
value of M; a trifle higher.

In figure 5 are shown the streamlines and constant Mach number
lines for the airfoil in the wind tunnel at M; = 0.75. The shock

wave touches the alrfoll at 32 percent of the chord and bends upstream.
Its total length is about 20 percent of the chord at this Mach number.
For comperison, figure 6 shows the streamlines and constant Mach number
lines for the alrfoil in free air. WNo shock 18 present in this case,
and the maximum Mach number on the airfoil is 1.10 rather than 1.165
for the airfoil in the tumnel. Before considering the detalls of these
flgures, 1t 1s well to look at the variation of Mach number along the
alrfoil as given in figures 7(a) and T(b) and the pressure coefficient
as given in figures 8(a) and 8(b). In these figures the pressure
coefflcient is defined by '

o »_ R
- P
Cp = 1_% (2)
;D q 2 Pia 2
oP19 1714
2 g

This coefficient was computed from the stream-function values by using
the computatlon curves presented in reference 5. The outstanding
feature to be observed in figures T(a) and 8(a) is the variation of
Mach number and pressure coefficlent when a shock wave 1s present, in
particular the variation of these quantitlies lmmediately following the
shock wave. The velocity and pressure coefficient, which have large
magnitudes Immediately preceding the shock, drop abruptly to values
considerably below those approprlate to the corresponding quantities

on the trailing portion of the alrfoil. The pressure coefficlent, in
fact, even falls in magnitude below the corresponding Incompressible-
fluid coefficient. This extreme drop is immediately followed by a very
rapld rise so that values on the traillng portion of the airfoll fall
in gbout the position to be expected on extrapolation of values obtained
at lower Mach numbers. This phenomenon, which in the present .calcu-
lations verifies the findings described in referemce 6 by actually
having as many as three net points in the reglon of rise, 1s caused by
the curvature condition described in reference 6. This appears so
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important that a brief reiteration of the physical ideas seems worth
while. Since the stream is required to follow the airfoll surface,
the curvature of the streamlines adjacent to the surface is specified
by that surface. Since the surface is everywhere convex, there must
be a pressure increase normal to the airfoil surface in order to cause
the velocity vector to turn as the fluid flows along the surface.
Following the shock, however, the shock conditions have produced a
pressure variation normal to the surface dependent on the pressure
variation Just prior to the shock, and in general for Mach numbers
near 1 the pressure variation normal to the surface will be reversed
by the shock. Hence the fluid must readjust itself very rapidly if it
is to follow the airfoil surface. This curvature condition is respon-
sible for the rapld pressure rise.

Some free-flight experimental pressure coefficients on an NACA
0012 airfoil at @ =0 are given dn figures 9 and 10. These data
were obtalned by The Glenn L. Martin Co. during the conduct of an
investigation for the Navy Department. The experimental data were
obtained by a wing-flow technique and are subject to a number of rather
large experimental errors. The most important of these is the difficulty
in maintaining a zero angle of attack. The pressure coefficients on the
upper and lower surfaces were different and the average is plotted.

A comparison of figures 8(b) and 9 shows many common general
features. The pressure coefficlent falls (in magnitude) with increase
of Mach number near the nose; elsewhere the reverse is true. The
pressure peak moves up at first slowly, then more rapidly with increase
of Mach number. At the same time, the pressure peak moves away from
the nose. .

If, at the point along the airfoll where the experimental data are
unsteady, a normal shock wave is assumed, the dashed sections of the
graph of figure 9 are obtained. These agree qualitatively very woll
with the computed results of figure 8(a). With boundary layer the shock
wave will usually be obligus.

In figure 5 some details of the process of adjustment are indicated
by the occurrence of a saddle point in the Mach number surface, which
to the accuracy of the present solutions appears to be at M; = 0.915.

Another interesting, though less spectacular, result may be noted. The
maximim Mach number on the airfoil surface increases more and more
rapidly as the undisturbed-stream Mach mumber increases and the point
on the chord on which the maximmm Mach number occurs moves toward the
trailing edge. At the higher undisturbed-stream Mach numbers, the
pressure coefficient near the leading edge tends to fall below those
for lower Mach numbers. It should also be observed that the shock wave
does not occur on the alrfoil surface at the point where the highest
Mach number exists. For example, for M; = 0.75 the maximm Mach

number M., on the airfoil surface occurs at 26 percent of the chord
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and is 1.165. The Mach number then falls to M = 1.140 immediately
before the shock wave, which is at 32 percent of the chord. After the
shock wave, the Mach number is 0.875 and rises rapidly to a maximum
of M= 0.955 before falling in the customary way along the rear half
of the girfoil.

A comparison of the variation of pressure coefficient along the
chord as affected by the wind-tunnel walls is shown in figure 11 for
an undisturbed-stream Mach number M; equal to 0.70. This figure

should be compared with figure 3, where the corresponding incompressible
coefficlents are plotted. For Mi = 0.70 +the difference in pressure

coefficient is about 18 percent of the maximum, a considerably larger
difference than the 4 percent of the incompressible case. The curves,
however, are still quite smooth, and it would be expected, therefore,
that a reasonably simple approximate theory might serve to predict this
difference. The difference between the pressure coefficient for a
compresslble flow with a shock wave and the incompressible fluild flow
varies conslderably from one point to another along the airfoll and at
maximm %s almost equal to one-third of the maximm coefficient. (See
fig. 12.

Comparlson has been made between the relaxation solution for the
effect of compressibility and the predictions made on the basis of a
mmber of current approximate theories. In figures 13 and 14, two cases
are plotted - the first for M; = 0.73 and the second for Mj = 0.60.

The approximate theories noted for comparison are glven by the following
equations: From Prandtl and Glauert (references 1 and 2, respectively),

c
c Fo (3)

= (1 -. M12>1/é

from Von Karmin and Tsien (references 3 and 4, respectively),

C

. 1
= C (k)
Py %) 1/2 2 C

(-2 ., M 20

i 2
l+(l-M12>/
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and. from the assumptlion of proportionah;ty of Knetic energy,

1 pa®
(2 - [Em
2 2
9.10 ;qu.l
¢ Po

Values of %%— were obtained from computation curve 13,

figure 24 of reference 5. From Temple-Yarwood (reference 12),

and from Garrick-Kaplan (reference 13),

Le(T)+a(7)]
- [1\ 2=
= @ AFC0C)]

where

T 1
1 - n\7-1ar
£(7) 2 Jo (L-7) = -

g(r) = %

(5)

(6)

(T
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It is to be noted that all these thegries are witﬁin +10 percent of the
relaxation solution and the Von Kdrman-Tsien equation gives almost
exactly the same result as the relaxation solution up to M; = 0.6.

However, 1t 1s to be noted that all the theories devlate very badly
at M; = 0.73, which, it should remembered, is very close to the first

appearance of shock waves. Cross plots of the pressure coefficient
for 20 and 30 percent of the chord are shown as figures 15 and 16,
respectively. Here agaln it 1s obvious that the approximate theories
are good until about M; = 0.6 after which the deviations become

consliderable. Following the appearance of shock waves, the approxi-
mate theories become completely worthless.

It might be well at this point to tabulate a few speclal values
obtained from the solutions which should be checked against experimental
results when these are availsble.

Mach number on the )
airfoll surface first | —0° T1rst shock wave
Test Teaches 1 at - appears at -
condition
Percent of chord M; |Percent of chord My
Airfoil in tumnel 20.5 0.710 25 0.73+
Airfoil in free air 17.2 725 800 a,754

8Free-alr solution with shock not carried out. These approximate
valuss obtained by extrapolation.

CONCLUSIONS

Calculation by the relaxation method of the effects of compressi-
bility on the flow about the NACA 0012 airfoll at zero angle of attack
in a wind tunnel and 1n free air ylelds the following general conclusions:

1. Pressure-coefficlent and Mach number variations along the NACA
0012 airfoil 1n a wind tunnel and in free alr were greater than experi-
mental results because the boundary layer was neglected in the
computations.

2. Comparisons of the relaxatlion solutions with the predictions
of several approximate theories showed most of the latter to fall con-
siderebly too low at high Mach numbers. The present theory is 1n better
agreement wlth experimental results on this alrfoil. .
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3. Because of the requirement of continuity of streamline
curvature across the shock at the surface of the alrfoil, the dis-
continuous drop of pressure-coefficient magnitude through the shock
is followed by a rapid rise. This rapid rise accounts for the experil-
mental fact that the fall in magnitude of pressure coefficlent as
measured 1s never as large as that to be expected from the measured
Mach number before the shock.

4. Although the relaxzation method appears to be adequate to solve
the very involved differential equations and boundary conditions
describing the flow of a compressible fluid, the calculations are too
involved to permit the investigation of a very wide range of interesting
cases without the use of high-speed calculating machines.

5. A number of important experimentally observed effects, especially
in the post-critical transonic zone, are not adequately described by the
present theory of frictlonless adlsbatic perfect gas plus shock-wave
discontinuities when necessary. No analytical solutions with this model

- f1luld can be more adequate than the present results. To describe
experimental results better requires the inclusion of the boundary layer.

Harvard University
Cambridge, Mass., May 7, 1946
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Figure 1.~ The problem calculated, CA 0012 airfoil at zero angls of attack on center
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